Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Journal of the Serbian Chemical Society ; 88(4):381-394, 2023.
Article in English | Web of Science | ID: covidwho-2309394

ABSTRACT

Curcumin is one of the important naturally occurring compounds having several medicinal properties such as: antiviral, antioxidant, antifibrotic, antineoplastic as well as anti-inflammatory. SARS-CoV-2 has emerged as inf-ectious virus, which severely infected a large number of people all over the world. Many efforts have been made to prepare novel antiviral compound, but it is still challenging. Naturally occurring compound, curcumin, can be used as an alternative to antiviral compound against SARS-CoV-2. Its effect against SARS-CoV-2 is already highlighted in the literature. But the quantitative study of its interaction with various precursors of SARS-CoV-2 is not reported till date. This paper reports the interaction of curcumin with angiotensin-convert-ing enzyme2, transmembrane serine protease 2, 3-chymotrypsin-like protease and papain-like protease through molecular docking and quantum chemistry calculations to achieve quantitative understanding of underlying interactions. Here the conformational flexibility of curcumin is also highlighted, which helps it to accommodate in the four different docking sites. The study has been performed using calculations of geometrical parameter, atomic charge, electron density, Laplacian of electron density, dipole moment and the energy gap between highest occupied and lowest unoccupied molecular orbitals. The non--covalentinteraction (NCI) analysis is performed to visualize the weak inter-action present in the active sites. Combinedly molecular docking and detailed quantum chemistry calculations revealed that curcumin can be adopted as a potential multiple-target inhibitor against SARS-CoV-2.

2.
J Biomol Struct Dyn ; : 1-23, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2301415

ABSTRACT

Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS­CoV­2.Communicated by Ramaswamy H. Sarma.

3.
Diagnostics (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2234249

ABSTRACT

Smelling is a critical sense utilized daily. Consequently, smelling impairment or anosmia may lead to a reduction in life quality. Systemic diseases and particular autoimmune conditions can impair olfactory function; among others are Systemic Lupus Erythematosus, Sjögren Syndrome, and Rheumatoid Arthritis. Interactions between the olfactory process and the immune systems cause this phenomenon. Alongside autoimmune conditions, in the recent COVID-19 pandemic, anosmia was also described as a prevalent infection symptom. Nevertheless, the occurrence of anosmia is significantly less common in Omicron-infected patients. Several theories have been proposed to explain this phenomenon. One possibility is that the Omicron variant preferentially enters host cells via endocytosis, rather than plasma cell membrane fusion. This endosomal pathway is less dependent on the activation of Transmembrane serine protease 2 (TMPRSS2), expressed at the olfactory epithelium. As a result, the Omicron variant may have reduced efficiency in penetrating the olfactory epithelium, leading to a lower prevalence of anosmia. Furthermore, olfactory changes are known to be associated with inflammatory conditions. The Omicron variant elicits a less robust autoimmune and inflammatory response, believed to reduce the probability of anosmia. This review elaborates on the commonalities and differences in autoimmune and COVID-19 omicron-associated anosmia.

4.
World J Gastroenterol ; 28(47): 6716-6731, 2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2231093

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has escalated into a global tragedy afflicting human health, life, and social governance. Through the increasing depth of research and a better understanding of this disease, it has been ascertained that, in addition to the lungs, SARS-CoV-2 can also induce injuries to other organs including the liver. Liver injury is a common clinical manifestation of COVID-19, particularly in severe cases, and is often associated with a poorer prognosis and higher severity of COVID-19. This review focuses on the general existing information on liver injury caused by COVID-19, including risk factors and subpopulations of liver injury in COVID-19, the association between preexisting liver diseases and the severity of COVID-19, and the potential mechanisms by which SARS-CoV-2 affects the liver. This review may provide some useful information for the development of therapeutic and preventive strategies for COVID-19-associated liver injury.


Subject(s)
COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Peptidyl-Dipeptidase A , Risk Factors , Liver
5.
Ir J Med Sci ; 2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-2236641

ABSTRACT

BACKGROUND: Individual susceptibility to develop acute respiratory distress syndrome is related to age and most frequent comorbidities. So far, it is known that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the type II pneumocytes in humans, with the help of transmembrane serine protease type 2 (TMPRSS2). Up to now, the only known transcriptional promoters of genes coding TMPRSS2 are androgenic. Theoretically, the elevated level of androgens or androgen receptors would lead to a higher expression of TMPRSS2 and a higher level of viremia as a consequence. AIM: The aim of our research was to indirectly investigate if the severity of SARS-CoV-2 infection is dependent on the expression of androgen receptors. METHODS: This observational study analysed male patients hospitalized for SARS-CoV-2 infection with respect to the length of hospitalisation, the outcome of the disease, the type of necessary oxygen support and the presence of comorbidities and hairiness. In hairiness estimation, we used an adapted version of the Hamilton-Norwood scale and the presence of the Gabrin sign. RESULTS: In total, 208 patients were enrolled in the study. There were statistically significant differences comparing the average age of patients with the different types of alopecia when groups were divided according to the presence of the Gabrin sign (t = 4.958, p > 0.01). The outcomes and the type of needed minimal oxygen support, compared with the type of alopecia in the case of Gabrin + / - classification showed a statistically significant difference in the outcome of the disease (p = 0.027). There were no statistically significant differences in the distribution of comorbidities among alopecia groups, but hypertension was related to poor COVID-19 prognosis. CONCLUSION: Our findings suggest that the Gabrin sign and hypertension are related to a poor COVID-19 prognosis.

6.
J Herb Med ; 38: 100635, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2210392

ABSTRACT

Introduction: A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method: This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results: Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions: Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.

7.
Trends Food Sci Technol ; 132: 40-53, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165901

ABSTRACT

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach: This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions: EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low µM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of µM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of µM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.

8.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031157

ABSTRACT

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

9.
J Clin Biochem Nutr ; 71(2): 129-135, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2022551

ABSTRACT

COVID-19 is pandemic since 2020 and further information is necessary on the risk factors associated with the infection of SARS-CoV-2. As an entry mechanism, SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as receptor and transmembrane serine protease 2 (TMPRSS2) to activate fusion with host plasma membrane. Because dysgeusia is an early symptom of COVID-19, we here studied the expression of ACE2 and TMPRSS2 in the tongue and the associated tissues of mice and humans with immunohistochemistry and immunoblot analysis. ACE2 expression was low in the human tongue but was observed in the squamous epithelium, perineurium, arterial wall, salivary glands as well as taste buds. In contrast, mice showed high expression. In sharp contrast, TMPRSS2 expression was high in all the cells mentioned above in humans but relatively low in mice except for salivary glands. We then performed semi-quantitation of immunohistochemistry data of human ACE2 and TMPRSS2 and analyzed for age, sex, alcohol intake, and smoking habit with logistic regression analysis. We found that alcohol intake and female gender were the significant risk factors for increasing TMPRSS2 expression. In conclusion, TMPRSS2 is an important factor to be considered regarding SARS-CoV-2 entry and amplification in the oral cavity, which is promoted through drinking habit.

10.
Viruses ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: covidwho-2010316

ABSTRACT

SARS-CoV-2 uses the ACE2 receptor and the cellular protease TMPRSS2 for entry into target cells. The present study aimed to establish if the TMPRSS2 polymorphisms are associated with COVID-19 disease. The study included 609 patients with COVID-19 confirmed by RT-PCR test and 291 individuals negative for the SARS-CoV-2 infection confirmed by RT-PCR test and without antibodies anti-SARS-CoV-2. Four TMPRSS2 polymorphisms (rs12329760, rs2298659, rs456298, and rs462574) were determined using the 5'exonuclease TaqMan assays. Under different inheritance models, the rs2298659 (pcodominant2 = 0.018, precessive = 0.006, padditive = 0.019), rs456298 (pcodominant1 = 0.014, pcodominant2 = 0.004; pdominant = 0.009, precessive = 0.004, padditive = 0.0009), and rs462574 (pcodominant1 = 0.017, pcodominant2 = 0.004, pdominant = 0.041, precessive = 0.002, padditive = 0.003) polymorphisms were associated with high risk of developing COVID-19. Two risks (ATGC and GAAC) and two protectives (GAGC and GAGT) haplotypes were detected. High levels of lactic acid dehydrogenase (LDH) were observed in patients with the rs462574AA and rs456298TT genotypes (p = 0.005 and p = 0.020, respectively), whereas, high heart rate was present in patients with the rs462574AA genotype (p = 0.028). Our data suggest that the rs2298659, rs456298, and rs462574 polymorphisms independently and as haplotypes are associated with the risk of COVID-19. The rs456298 and rs462574 genotypes are related to high levels of LDH and heart rate.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Exonucleases , Humans , Lactic Acid , Oxidoreductases , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics
11.
J Virol ; 96(17): e0114022, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001778

ABSTRACT

The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , Immune Evasion , SARS-CoV-2 , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , Humans , Immune Evasion/immunology , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Saudi Dent J ; 34(7): 596-603, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1983982

ABSTRACT

Objective: Studies have shown that gingival crevices may be a significant route for SARS-CoV-2 entry. However, the role of oral health in the acquisition and severity of COVID-19 is not known. Design: A retrospective analysis was performed using electronic health record data from a large urban academic medical center between 12/1/2019 and 8/24/2020. A total of 387 COVID-19 positive cases were identified and matched 1:1 by age, sex, and race to 387 controls without COVID-19 diagnoses. Demographics, number of missing teeth and alveolar crestal height were determined from radiographs and medical/dental charts. In a subgroup of 107 cases and controls, we also examined the rate of change in alveolar crestal height. A conditional logistic regression model was utilized to assess association between alveolar crestal height and missing teeth with COVID-19 status and with hospitalization status among COVID-19 cases. Results: Increased alveolar bone loss, OR = 4.302 (2.510 - 7.376), fewer missing teeth, OR = 0.897 (0.835-0.965) and lack of smoking history distinguished COVID-19 cases from controls. After adjusting for time between examinations, cases with COVID-19 had greater alveolar bone loss compared to controls (0.641 ± 0.613 mm vs 0.260 ± 0.631 mm, p < 0.01.) Among cases with COVID-19, increased number of missing teeth OR = 2.1871 (1.146- 4.174) was significantly associated with hospitalization. Conclusions: Alveolar bone loss and missing teeth are positively associated with the acquisition and severity of COVID-19 disease, respectively.

13.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1911505

ABSTRACT

One inhibitor of the main SARS-CoV-2 protease has been approved recently by the FDA, yet it targets only SARS-CoV-2 main protease (Mpro). Here, we discovered inhibitors containing thiuram disulfide or dithiobis-(thioformate) tested against three key proteases involved in SARS-CoV-2 replication, including Mpro, SARS-CoV-2 papain-like protease (PLpro), and human cathepsin L. The use of thiuram disulfide and dithiobis-(thioformate) covalent inhibitor warheads was inspired by an idea to find a better alternative than disulfiram, an approved treatment for chronic alcoholism that is currently in phase 2 clinical trials against SARS-CoV-2. Our goal was to find more potent inhibitors that target both viral proteases and one essential human protease to reduce the dosage, improve the efficacy, and minimize the adverse effects associated with these agents. We found that compounds coded as RI175, RI173, and RI172 were the most potent inhibitors in an enzymatic assay against SARS-CoV-2 Mpro, SARS-CoV-2 PLpro, and human cathepsin L, with IC50s of 300, 200, and 200 nM, which is about 5-, 19-, and 11-fold more potent than disulfiram, respectively. In addition, RI173 was tested against SARS-CoV-2 in a cell-based and toxicity assay and was shown to have a greater antiviral effect than disulfiram. The identified compounds demonstrated the promising potential of thiuram disulfide or dithiobis-(thioformate) as a reactive functional group in small molecules that could be further developed for treatment of the COVID-19 virus or related variants.

14.
BMC Bioinformatics ; 23(1): 180, 2022 May 16.
Article in English | MEDLINE | ID: covidwho-1846793

ABSTRACT

BACKGROUND: The Transmembrane Serine Protease 2 (TMPRSS2) of human cell plays a significant role in proteolytic cleavage of SARS-Cov-2 coronavirus spike protein and subsequent priming to the receptor ACE2. Approaching TMPRSS2 as a therapeutic target for the inhibition of SARS-Cov-2 infection is highly promising. Hence, in the present study, we docked the binding efficacy of ten naturally available phyto compounds with known anti-viral potential with TMPRSS2. The aim is to identify the best phyto compound with a high functional affinity towards the active site of the TMPRSS2 with the aid of two different docking software. Molecular Dynamic Simulations were performed to analyse the conformational space of the binding pocket of the target protein with selected molecules. RESULTS: Docking analysis using PyRx version 0.8 along with AutoDockVina reveals that among the screened phyto compounds, Genistein shows the maximum binding affinity towards the hydrophobic substrate-binding site of TMPRSS2 with three hydrogen bonds interaction ( - 7.5 kcal/mol). On the other hand, molecular docking analysis using Schrodinger identified Quercetin as the most potent phyto compound with a maximum binding affinity towards the hydrophilic catalytic site of TMPRSS2 ( - 7.847 kcal/mol) with three hydrogen bonds interaction. The molecular dynamics simulation reveals that the Quercetin-TMPRSS complex is stable until 50 ns and forms stable interaction with the protein ( - 22.37 kcal/mol of MM-PBSA binding free energy). Genistein creates a weak interaction with the loop residues and hence has an unstable binding and exits from the binding pocket. CONCLUSION: The compounds, Quercetin and Genistein, can inhibit the TMPRSS2 guided priming of the spike protein. The compounds could reduce the interaction of the host cell with the type I transmembrane glycoprotein to prevent the entry of the virus. The critical finding is that compared to Genistein, Quercetin exhibits higher binding affinity with the catalytic unit of TMPRSS2 and forms a stable complex with the target. Thus, enhancing our innate immunity by consuming foods rich in Quercetin and Genistein or developing a novel drug in the combination of Quercetin and Genistein could be the brilliant choices to prevent SARS-Cov-2 infection when we consider the present chaos associated with vaccines and anti-viral medicines.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Antiviral Agents/pharmacology , Genistein/pharmacology , Humans , Molecular Docking Simulation , Quercetin/pharmacology , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization
15.
J Transl Autoimmun ; 5: 100154, 2022.
Article in English | MEDLINE | ID: covidwho-1783601

ABSTRACT

The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.

16.
Expert Opin Drug Discov ; 17(3): 231-246, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1649006

ABSTRACT

INTRODUCTION: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the devastating pandemic named coronavirus disease 2019 (COVID-19). Unfortunately, the discovery of antiviral agents to combat COVID-19 is still an unmet need. Transmembrane serine protease 2 (TMPRSS2) is an important mediator in viral infection and thus, TMPRRS2 inhibitors may be attractive agents for COVID-19 treatment. AREAS COVERED: This review article discusses the role of TMPRSS2 in SARS-CoV-2 cell entry and summarizes the inhibitors of TMPRSS2 and their potential anti-SARS activity. Two known TMPRSS2 inhibitors, namely camostat and nafamostat, approved drugs for the treatment of pancreatitis, are under clinical trials as potential drugs against COVID-19. EXPERT OPINION: Due to the lack of the crystal structure of TMPRSS2, homology models have been developed to study the interactions of known inhibitors, including repurposed drugs, with the enzyme. However, novel TMPRSS2 inhibitors have been identified through high-throughput screening, and appropriate assays studying their in vitro activity have been set up. The discovery of TMPRSS2's crystal structure will facilitate the rational design of novel inhibitors and in vivo studies and clinical trials will give a clear answer if TMPRSS2 inhibitors could be a new weapon against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Serine Endopeptidases , Virus Internalization , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization/drug effects
17.
Respiration ; 101(6): 610-618, 2022.
Article in English | MEDLINE | ID: covidwho-1626135

ABSTRACT

BACKGROUND: The novel beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enters the human body via mucosal surfaces of the upper and/or lower respiratory tract. Viral entry into epithelial cells is mediated via angiotensin-converting enzyme 2 (ACE2) and auxiliary molecules, but the precise anatomic site of infection still remains unclear. METHODS: Here, we systematically investigated the main SARS-CoV-2 receptor proteins ACE2 and transmembrane serine protease 2 (TMPRSS2), as well as 2 molecules potentially involved in viral entry, furin and CD147, in formalin-fixed, paraffin-embedded human tissues. Tissue microarrays incorporating a total of 879 tissue cores from conjunctival (n = 84), sinonasal (n = 95), and lung (bronchiolar/alveolar; n = 96) specimens were investigated for protein expression by immunohistochemistry. RESULTS: ACE2 and TMPRSS2 were expressed in ciliated epithelial cells of the conjunctivae and sinonasal tissues, with highest expression levels observed in the apical cilia. In contrast, in the lung, the expression of those molecules in bronchiolar and alveolar epithelial cells was much rarer and only very focal when present. Furin and CD147 were more uniformly expressed in all tissues analyzed, including the lung. Interestingly, alveolar macrophages consistently expressed high levels of all 4 molecules investigated. CONCLUSIONS: Our study confirms and extends previous findings and contributes to a better understanding of potential SARS-CoV-2 infection sites along the human respiratory tract.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Basigin/metabolism , Furin/metabolism , Respiratory System/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization , COVID-19/metabolism , COVID-19/virology , Humans , Lung/metabolism , Respiratory System/virology
18.
Gene Rep ; 26: 101495, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1620681

ABSTRACT

Diabetes mellitus is a metabolic disease that causes hyperglycemia. In COVID-19 patients the severity of the disease depends on myriad factors but diabetes mellitus is the most important comorbidity. The current review was conducted to investigate the virulence of SARS-CoV-2 and disease severity of COVID-19 in type 2 diabetes mellitus patients and relevant treatment. The literature published in PubMed, Scopus, Web of Science, and Google Scholar was reviewed up to September 2021. The keywords including SARS-CoV-2, type 2 diabetes mellitus in COVID-19, hyperglycemia in COVID-19, opportunistic infections in type 2 diabetes mellitus and COVID-19 were used in different combinations. Hyperglycemic individuals over-express ACE-2 receptors in the lungs thus increasing the SARS-CoV-2 susceptibility and replication. Although dipeptidyl peptidase-4 plays an important role in glucose homeostasis, additionally it also stimulates the production of proinflammatory cytokines such as IL-6 and TNF-α creating a cytokine storm. Cytokine storm might be responsible for respiratory insufficiency in severe COVID-19 patients. Type 2 diabetes mellitus is associated with immunosuppression and the patients are prone to get many opportunistic infections. Type 2 diabetes mellitus patients with severe COVID-19 have lymphopenia. Moreover, in type 2 diabetes mellitus patients the neutrophils exhibit decreased chemotaxis, hydrogen peroxide production, and phagocytosis. Reduction in lymphocyte count and defective neutrophil capacity renders them with COVID-19 susceptible to opportunistic bacterial and fungal infections increasing the mortality rate. The opportunistic bacterial infections in COVID-19 patients were due to Staphylococcus aureus, Streptococcus pneumonia, and coagulase-negative Staphylococci, E. coli, Pseudomonas aeruginosa, and Klebsiella sp. In COVID-19 patients with type 2 diabetes mellitus, mucormycosis was found to be the most common fungal infection with a higher predilection to males. Hyperglycemia in COVID-19 patients with type 2 diabetes mellitus enhances the SARS-CoV-2 replication with an adverse outcome. A strong correlation exists between the poor prognosis of COVID-19 and type 2 diabetes mellitus. Proper glycemic control in COVID-19 patients with diabetes mellitus might lessen the severity of the disease.

19.
World J Gastroenterol ; 27(46): 7943-7955, 2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1580318

ABSTRACT

Inflammatory bowel diseases (IBD) refer to a subgroup of chronic, progressive, long-term, and relapsing inflammatory disorders. IBD may spontaneously grow in the colon, and in severe cases may result in tumor lesions such as invasive carcinoma in inflamed regions of the intestine. Recent epidemiological reports indicate that old age and underlying diseases such as IBD contribute to severity and mortality in patients with coronavirus disease 2019 (COVID-19). Currently, the ongoing COVID-19 pandemic caused serious morbidity and mortality worldwide. It has also been shown that the transmembrane serine protease 2 is an essential factor for viral activation and viral engulfment. Generally, viral entry causes a 'cytokine storm' that induces excessive generation of proinflammatory cytokines/chemokines including interleukin (IL)-6, IL-2, IL-7, tumor necrosis factor-α, and interferon-γ. Future research could concentrate on developing inflammatory immunological responses that are efficient to encounter COVID-19. Current analysis elucidates the role of inflammation and immune responses during IBD infection with COVID-19 and provides a list of possible targets for IBD-regulated therapies in particular. Data from clinical, in vitro, and in vivo studies were collected in English from PubMed, Google Scholar, Scopus, and the Cochrane library until May 2021.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents , Humans , Inflammatory Bowel Diseases/therapy , Neoplasm Recurrence, Local , Pandemics , SARS-CoV-2 , Serine Proteases
20.
Indian Journal of Pharmaceutical Sciences ; 83(6):1181-1195, 2021.
Article in English | Web of Science | ID: covidwho-1579179

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 and associated coronavirus disease 2019 is a newly identified human coronavirus has imposed a serious threat to global health. The rapid transmission of severe acute respiratory syndrome coronavirus 2 and its ability to spread in humans have prompted the development of new approaches for its treatment. Severe acute respiratory syndrome coronavirus 2 requires RNA-dependent RNA polymerases for life cycle propagation and Spike (S)-protein for attachment to the host cell surface receptors. The virus enters the human body with the assistance of a key functional host receptor dipeptidyl peptidase-4 primed by transmembrane serine protease 2 which are putative targets for drug development. We performed screening of 267 compounds from Curcuma longa L. (Zingiberaceae family) against the viral S-protein and RNA-dependent RNA polymerases and host receptor proteins dipeptidyl peptidase-4 and transmembrane serine protease 2 using in silico molecular docking. Compounds C1, ((4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-4,6-dien3-one) and C6 ((4Z,6E)-1,5-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-4,6-dien-3-one) exhibited tight binding to the S1 domain of the Spike protein than VE607 and with RNA-dependent RNA polymerase protein more effectively than ribavirin and remdesivir. These compounds also interacted with the human host proteins dipeptidyl peptidase-4 and transmembrane serine protease 2 with higher efficiency than standard inhibitors sitagliptin and camostat mesylate. The lead compounds showed favorable free binding energy for all the studied protein-ligand complexes in Molecular mechanics/Generalized born model and solvent accessibility analysis. Besides, other Curcuma longa compounds C14 and C23 exhibited almost similar potential against these target proteins. The structure based optimization and molecular docking studies have provided information on some lead Curcuma longa compounds with probability for advancement in preclinical research.

SELECTION OF CITATIONS
SEARCH DETAIL